
Fundamentals

Search engines are the first destination for people to
gain knowledge.

Searchers' needs transcend the old information
retrieval paradigm and promote exploratory search
that blends fact-finding in the context of learning
exploration.

Search engines should strive to fulfil searcher's needs.
Evaluation of exploratory search systems is a stepstone to
achieve that.

Evaluation tools must consider the searcher as an integral
part of the search process and gather implicit and
explicit searcher information.

Data gathered in the background are Implicit data.
Data gathered as direct feedback are Explicit data.

Background

Few tools have been developed to evaluate exploratory
search systems.

Most existing tools are not maintained or updated, and
some are not even publicly accessible.

Accessible tools either exclude the searcher from the
evaluation context or exclude their explicit input.

Objectives

The objective is to build a system with the following
properties:

- Modern, Modular, Intuitive, and Versatile.
- Puts focus on the searcher.
- Logs explicit and implicit data.
- Able to provide a precompiled set of search

tasks.
- Able to provide a precompiled set of pre-, and/or

post-questionnaires.
- Able to guarantee anonymity.
- Logs job title, gender, and date of birth.
- Logs user-browser interactions.
- Logs user-system interactions.
- Logs query, search engine, and SERP.
- Easily distributable.
- Clean code & architecture.

Design & Architecture

EI-Logger is a browser extension designed to be flexible
and with the exploratory search in mind.

Built around the definition of the exploratory search
task being an open-ended, abstract and poorly defined
information need with a multifaceted character.

References

- Georg Singer, Ulrich Norbisrath, Eero Vainikko, Hannu Kikkas, and Dirk Lewandowski. (2011). Search-logger
analyzing exploratory search tasks. In Proceedings of the 2011 ACM Symposium on Applied Computing (SAC '11).
751–756.

- Gary Marchionini. (2006). Exploratory search: from finding to understanding. Commun. ACM. 49. 41-46.

Implementation & Future work

Implementation:
- Typescript: guarantees code safety and
robustness.

- React: a modern and widespread frontend
framework.

- DexieDB: offers a simple interface for the local
browser IndexedDB.

- GitHub Repository: has the code for the extension.
- Jira board: has stories and tasks.

Future Work:
- Add RAT integration or its own backend.
- Log the index of the clicked search result item.
- Exclude information from the SERP Log that leads back
to the searcher.

- Prevent logging on private or user-chosen Websites.

Hossam Al Mustafa hossam.almustafa0@gmail.com

Screenshots

	Slide 1

